Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 12(1): 6982, 2021 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-34848707

RESUMO

Phospholipids are the major components of the membrane in all type of cells and organelles. They also are critical for cell metabolism, signal transduction, the immune system and other critical cell functions. The biosynthesis of phospholipids is a complex multi-step process with high-energy intermediates. Several enzymes in different metabolic pathways are involved in the initial phospholipid synthesis and its subsequent conversion. While the "Kennedy pathway" is the main pathway in mammalian cells, in bacteria and lower eukaryotes the precursor CDP-DAG is used in the de novo pathway by CDP-DAG alcohol O-phosphatidyl transferases to synthetize the basic lipids. Here we present the high-resolution structures of phosphatidyl serine synthase from Methanocaldococcus jannaschii crystallized in four different states. Detailed structural and functional analysis of the different structures allowed us to identify the substrate binding site and show how CDP-DAG, serine and two essential metal ions are bound and oriented relative to each other. In close proximity to the substrate binding site, two anions were identified that appear to be highly important for the reaction. The structural findings were confirmed by functional activity assays and suggest a model for the catalytic mechanism of CDP-DAG alcohol O-phosphatidyl transferases, which synthetize the phospholipids essential for the cells.


Assuntos
CDPdiacilglicerol-Serina O-Fosfatidiltransferase/química , CDPdiacilglicerol-Serina O-Fosfatidiltransferase/metabolismo , Methanocaldococcus/enzimologia , Sítios de Ligação , CDPdiacilglicerol-Serina O-Fosfatidiltransferase/genética , Cristalografia por Raios X , Cistina Difosfato , Escherichia coli , Lipídeos de Membrana/química , Fosfatidilserinas , Fosfolipídeos , Fosfotransferases , Transferases
3.
Proc Natl Acad Sci U S A ; 116(27): 13352-13357, 2019 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-31209022

RESUMO

Pneumolysin (PLY), a major virulence factor of Streptococcus pneumoniae, perforates cholesterol-rich lipid membranes. PLY protomers oligomerize as rings on the membrane and then undergo a structural transition that triggers the formation of membrane pores. Structures of PLY rings in prepore and pore conformations define the beginning and end of this transition, but the detailed mechanism of pore formation remains unclear. With atomistic and coarse-grained molecular dynamics simulations, we resolve key steps during PLY pore formation. Our simulations confirm critical PLY membrane-binding sites identified previously by mutagenesis. The transmembrane ß-hairpins of the PLY pore conformation are stable only for oligomers, forming a curtain-like membrane-spanning ß-sheet. Its hydrophilic inner face draws water into the protein-lipid interface, forcing lipids to recede. For PLY rings, this zone of lipid clearance expands into a cylindrical membrane pore. The lipid plug caught inside the PLY ring can escape by lipid efflux via the lower leaflet. If this path is too slow or blocked, the pore opens by membrane buckling, driven by the line tension acting on the detached rim of the lipid plug. Interestingly, PLY rings are just wide enough for the plug to buckle spontaneously in mammalian membranes. In a survey of electron cryo-microscopy (cryo-EM) and atomic force microscopy images, we identify key intermediates along both the efflux and buckling pathways to pore formation, as seen in the simulations.


Assuntos
Membrana Celular/efeitos dos fármacos , Estreptolisinas/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/farmacologia , Membrana Celular/metabolismo , Colesterol/metabolismo , Microscopia Crioeletrônica , Bicamadas Lipídicas/metabolismo , Microscopia de Força Atômica , Simulação de Dinâmica Molecular , Estreptolisinas/farmacologia
4.
Elife ; 62017 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-28323617

RESUMO

Many pathogenic bacteria produce pore-forming toxins to attack and kill human cells. We have determined the 4.5 Å structure of the ~2.2 MDa pore complex of pneumolysin, the main virulence factor of Streptococcus pneumoniae, by cryoEM. The pneumolysin pore is a 400 Å ring of 42 membrane-inserted monomers. Domain 3 of the soluble toxin refolds into two ~85 Å ß-hairpins that traverse the lipid bilayer and assemble into a 168-strand ß-barrel. The pore complex is stabilized by salt bridges between ß-hairpins of adjacent subunits and an internal α-barrel. The apolar outer barrel surface with large sidechains is immersed in the lipid bilayer, while the inner barrel surface is highly charged. Comparison of the cryoEM pore complex to the prepore structure obtained by electron cryo-tomography and the x-ray structure of the soluble form reveals the detailed mechanisms by which the toxin monomers insert into the lipid bilayer to perforate the target membrane.


Assuntos
Membrana Celular/efeitos dos fármacos , Membrana Celular/ultraestrutura , Estreptolisinas/metabolismo , Animais , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/ultraestrutura , Microscopia Crioeletrônica , Cristalografia por Raios X , Eritrócitos/efeitos dos fármacos , Modelos Moleculares , Ovinos , Estreptolisinas/química
5.
Nano Lett ; 16(12): 7915-7924, 2016 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-27796097

RESUMO

Pneumolysin (PLY) is the main virulence factor of Streptococcus pneumoniae that causes pneumonia, meningitis, and invasive pneumococcal infection. PLY is produced as monomers, which bind to cholesterol-containing membranes, where they oligomerize into large pores. To investigate the pore-forming mechanism, we determined the crystal structure of PLY at 2.4 Šand used it to design mutants on the surface of monomers. Electron microscopy of liposomes incubated with PLY mutants revealed that several mutations interfered with ring formation. Mutants that formed incomplete rings or linear arrays had strongly reduced hemolytic activity. By high-resolution time-lapse atomic force microscopy of wild-type PLY, we observed two different ring-shaped complexes. Most of the complexes protruded ∼8 nm above the membrane surface, while a smaller number protruded ∼11 nm or more. The lower complexes were identified as pores or prepores by the presence or absence of a lipid bilayer in their center. The taller complexes were side-by-side assemblies of monomers of soluble PLY that represent an early form of the prepore. Our observations suggest a four-step mechanism of membrane attachment and pore formation by PLY, which is discussed in the context of recent structural models. The functional separation of these steps is necessary for the understanding how cholesterol-dependent cytolysins form pores and lyse cells.


Assuntos
Streptococcus pneumoniae/química , Estreptolisinas/química , Proteínas de Bactérias/química , Bicamadas Lipídicas , Lipossomos , Microscopia de Força Atômica , Estrutura Terciária de Proteína
6.
Acta Crystallogr D Biol Crystallogr ; 71(Pt 10): 2040-53, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26457428

RESUMO

The small nuclear ribonucleoproteins (snRNPs) U1, U2, U4/6 and U5 are major constituents of the pre-mRNA processing spliceosome. They contain a common RNP core that is formed by the ordered binding of Sm proteins onto the single-stranded Sm site of the snRNA. Although spontaneous in vitro, assembly of the Sm core requires assistance from the PRMT5 and SMN complexes in vivo. To gain insight into the key steps of the assembly process, the crystal structures of two assembly intermediates of U snRNPs termed the 6S and 8S complexes have recently been reported. These multimeric protein complexes could only be crystallized after the application of various rescue strategies. The developed strategy leading to the crystallization and solution of the 8S crystal structure was subsequently used to guide a combination of rational crystal-contact optimization with surface-entropy reduction of crystals of the related 6S complex. Conversely, the resulting high-resolution 6S crystal structure was used during the restrained refinement of the 8S crystal structure.


Assuntos
Proteínas de Drosophila/química , Drosophila melanogaster/química , Ribonucleoproteínas Nucleares Pequenas/química , Spliceossomos/química , Animais , Cristalização , Cristalografia por Raios X , Entropia , Modelos Moleculares
7.
Nano Lett ; 15(10): 6965-73, 2015 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-26302195

RESUMO

Listeriolysin O (LLO) is the major virulence factor of Listeria monocytogenes and a member of the cholesterol-dependent cytolysin (CDC) family. Gram-positive pathogenic bacteria produce water-soluble CDC monomers that bind cholesterol-dependent to the lipid membrane of the attacked cell or of the phagosome, oligomerize into prepores, and insert into the membrane to form transmembrane pores. However, the mechanisms guiding LLO toward pore formation are poorly understood. Using electron microscopy and time-lapse atomic force microscopy, we show that wild-type LLO binds to membranes, depending on the presence of cholesterol and other lipids. LLO oligomerizes into arc- or slit-shaped assemblies, which merge into complete rings. All three oligomeric assemblies can form transmembrane pores, and their efficiency to form pores depends on the cholesterol and the phospholipid composition of the membrane. Furthermore, the dynamic fusion of arcs, slits, and rings into larger rings and their formation of transmembrane pores does not involve a height difference between prepore and pore. Our results reveal new insights into the pore-forming mechanism and introduce a dynamic model of pore formation by LLO and other CDC pore-forming toxins.


Assuntos
Proteínas de Choque Térmico/fisiologia , Proteínas Hemolisinas/fisiologia , Lipídeos/fisiologia , Toxinas Bacterianas , Proteínas de Choque Térmico/ultraestrutura , Proteínas Hemolisinas/ultraestrutura , Listeria monocytogenes/patogenicidade , Microscopia de Força Atômica , Microscopia Eletrônica , Virulência
8.
Arch Biochem Biophys ; 576: 73-9, 2015 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-25958106

RESUMO

OmpG is a nonselective, pH dependent outer membrane protein from Escherichia coli. It consists of 281 residues, forming a 14-stranded ß-sheet structure. In this study, OmpG is extended by 38 amino acids to produce a 16-stranded ß-barrel (OmpG-16S). The resulting protein is investigated by IR-spectroscopy. The secondary structure, pH-dependent opening/closing mechanism, buffer accessibility and thermal stability of OmpG-16S are compared to OmpG-WT. The results show that OmpG-16S is responsive to pH change as indicated by the Amide I band shift upon a switch from acidic to neutral pH. This spectral shift is consistent with that observed in OmpG-WT, which confirms the existence of structural differences consistent with the presence of the open or closed state. Secondary structure analysis after curve-fitting of Amide I band revealed that the additional residues do not fold into ß-sheet; rather they are in the form of turns and unordered structure. In thermal stability experiments, OmpG-16S is found to be as stable as OmpG-WT. Additionally, H/D exchange experiments showed no difference in the exchange rate of OmpG-16S between the acidic and alkaline pH, suggesting that the loop L6 is no longer sufficient to block the pore entrance at acidic pH.


Assuntos
Proteínas da Membrana Bacteriana Externa/química , Proteínas da Membrana Bacteriana Externa/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Escherichia coli/química , Escherichia coli/genética , Porinas/química , Porinas/genética , Concentração de Íons de Hidrogênio , Mutação , Estabilidade Proteica , Estrutura Secundária de Proteína , Espectroscopia de Infravermelho com Transformada de Fourier , Temperatura
9.
Methods Enzymol ; 557: 149-66, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25950964

RESUMO

OmpG is a pore-forming protein from E. coli outer membranes. Unlike the classical outer membrane porins, which are trimers, the OmpG channel is a monomeric ß-barrel made of 14 antiparallel ß-strands with short periplasmic turns and longer extracellular loops. The channel activity of OmpG is pH dependent and the channel is gated by the extracellular loop L6. At neutral/high pH, the channel is open and permeable for substrate molecules with a size up to 900 Da. At acidic pH, loop L6 folds across the channel and blocks the pore. The channel blockage at acidic pH appears to be triggered by the protonation of a histidine pair on neighboring ß-strands, which repel one another, resulting in the rearrangement of loop L6 and channel closure. OmpG was purified by refolding from inclusion bodies and crystallized in two and three dimensions. Crystallization and analysis by electron microscopy and X-ray crystallography revealed the fundamental mechanisms essential for the channel activity.


Assuntos
Proteínas da Membrana Bacteriana Externa/química , Microscopia Crioeletrônica/métodos , Cristalografia por Raios X/métodos , Proteínas de Escherichia coli/química , Escherichia coli/química , Porinas/química , Redobramento de Proteína , Proteínas da Membrana Bacteriana Externa/isolamento & purificação , Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas da Membrana Bacteriana Externa/ultraestrutura , Cromatografia em Gel , Cromatografia por Troca Iônica , Dicroísmo Circular , Cristalização/métodos , Eletroforese , Escherichia coli/metabolismo , Proteínas de Escherichia coli/isolamento & purificação , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/ultraestrutura , Modelos Moleculares , Porinas/isolamento & purificação , Porinas/metabolismo , Porinas/ultraestrutura , Estrutura Secundária de Proteína
10.
Nat Commun ; 5: 3690, 2014 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-24751541

RESUMO

Listeriolysin O (LLO) is an essential virulence factor of Listeria monocytogenes that causes listeriosis. Listeria monocytogenes owes its ability to live within cells to the pH- and temperature-dependent pore-forming activity of LLO, which is unique among cholesterol-dependent cytolysins. LLO enables the bacteria to cross the phagosomal membrane and is also involved in activation of cellular processes, including the modulation of gene expression or intracellular Ca(2+) oscillations. Neither the pore-forming mechanism nor the mechanisms triggering the signalling processes in the host cell are known in detail. Here, we report the crystal structure of LLO, in which we identified regions important for oligomerization and pore formation. Mutants were characterized by determining their haemolytic and Ca(2+) uptake activity. We analysed the pore formation of LLO and its variants on erythrocyte ghosts by electron microscopy and show that pore formation requires precise interface interactions during toxin oligomerization on the membrane.


Assuntos
Toxinas Bacterianas/química , Biopolímeros/química , Proteínas de Choque Térmico/química , Proteínas Hemolisinas/química , Sequência de Aminoácidos , Toxinas Bacterianas/genética , Cristalografia por Raios X , Proteínas de Choque Térmico/genética , Proteínas Hemolisinas/genética , Concentração de Íons de Hidrogênio , Listeria/química , Dados de Sequência Molecular , Estrutura Molecular , Mutação , Homologia de Sequência de Aminoácidos , Temperatura
11.
PLoS One ; 8(11): e81710, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24312339

RESUMO

The cystine-knot containing protein Sclerostin is an important negative regulator of bone growth and therefore represents a promising therapeutic target. It exerts its biological task by inhibiting the Wnt (wingless and int1) signaling pathway, which participates in bone formation by promoting the differentiation of mesenchymal stem cells to osteoblasts. The core structure of Sclerostin consists of three loops with the first and third loop (Finger 1 and Finger 2) forming a structured ß-sheet and the second loop being unstructured and highly flexible. Biochemical data showed that the flexible loop is important for binding of Sclerostin to Wnt co-receptors of the low-density lipoprotein related-protein family (LRP), by interacting with the Wnt co-receptors LRP5 or -6 it inhibits Wnt signaling. To further examine the structural requirements for Wnt inhibition, we performed an extensive mutational study within all three loops of the Sclerostin core domain involving single and multiple mutations as well as truncation of important regions. By this approach we could confirm the importance of the second loop and especially of amino acids Asn92 and Ile94 for binding to LRP6. Based on a Sclerostin variant found in a Turkish family suffering from Sclerosteosis we generated a Sclerostin mutant with cysteines 84 and 142 exchanged thereby removing the third disulfide bond of the cystine-knot. This mutant binds to LRP6 with reduced binding affinity and also exhibits a strongly reduced inhibitory activity against Wnt1 thereby showing that also elements outside the flexible loop are important for inhibition of Wnt by Sclerostin. Additionally, we examined the effect of the mutations on the inhibition of two different Wnt proteins, Wnt3a and Wnt1. We could detect clear differences in the inhibition of these proteins, suggesting that the mechanism by which Sclerostin antagonizes Wnt1 and Wnt3a is fundamentally different.


Assuntos
Cistina , Análise Mutacional de DNA , Glicoproteínas/química , Glicoproteínas/metabolismo , Via de Sinalização Wnt , Proteínas Adaptadoras de Transdução de Sinal , Motivos de Aminoácidos , Animais , Glicoproteínas/genética , Células HEK293 , Humanos , Peptídeos e Proteínas de Sinalização Intercelular , Proteína-6 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Camundongos , Modelos Moleculares , Relação Estrutura-Atividade , Proteína Wnt1/antagonistas & inibidores , Proteína Wnt3A/antagonistas & inibidores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...